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1 The 2006 Major Stratospheric Sudden Warming: Introduction and Synoptic Overview 3 Fine-Scale Transport
[0 Nearly complete break down of vortex throughout stratosphere Extensive fine-scale structure developed during the 2006 SSW. High-resolution reverse trajectory (RT, aka “RDF”) calculations are used to explore where and when ACE and MLS
. - capture these features:
= 120 [1 US vortex reformed quickly to become unusually strong by mid-February
S . o [1 Parcels started on the grid/at the time of the desired output (high-resolution map, profile, or curtain), and back trajectories run from these locations for 8—12 days
3 [1 MS vortex reformed slowly, gaining average strength only in mid-March
160 _ . [J Lat/lon gridded MLS fields (N,O, H,O, O3, CO) interpolated to the ending back-trajectory times and locations
80 = [1 LS vortex remained very weak throughout winter
0 [] These values, plotted at initial locations, represent a calculation of passively transported fields at the initial time/locations
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6.4 [1 Final warming was very late, in early May — characteristic after prolonged midwinter warming [e.g.,
N\ ook Manney et al, 2005, JGR] [ High-resolution profiles are at 100 levels equally spaced in log(8) between 400 and 1700 K
563 [0 ACE sampled both inside and outside the vortex (or its remnants) on most days [J High-resolution isentropic maps are run on an equal area grid with 0.5x0.5° equatorial spacing
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7 B°°% 0 MLS tracers show good agreement with vortex evolution reflected in PV contours [ “Curtains” for MLS are ensembles of profiles at each MLS measurement location along an orbit track
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"\ Hoos2 ter, focusing on Aura MLS (Version 1.5) and ACE-FTS (Version 2.2, hereinafter “ACE”) long-lived
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A very strong “major” stratospheric sudden warming (SSW) began in January 2006. We have an | [J Vortex-averaged time series showing signatures of descent and mixing 5 80 5 so0f 1 e
unprecedented wealth of long-lived trace gas data covering the stratosphere and lower mesosphere 0 0b y d traiect lculat bowing i ot . ‘ - % 700 % 700~ ‘. 1 ao”
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[] No major warmings during the UARS mission [ Preliminary comparisons with a SLIMCAT chemical transport model (CTM) simulation TSTSVETYTETETEY - d o Ty w )5
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] Latest previous major warming in January 2004 only very sparsely covered by early ACE data, and | 0 Meteorological data are from GEOS-4 (NASA Global Modeling and Assimilation Office Goddard Profile #/L atitude/L ongitude Profile #/L atitude/Longitude
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before Aura launch with EOS MLS Earth Observing System V4.03); v1.1 GEOS-4 Derived Meteorological Product (DMP) files are 520 K 1500 [ et ‘ 1600 T e = H7_0
[0 The preceding figure shows Aura MLS tracers at 1700 K (upper stratosphere (US), CO), 850 K used for ACE [see Manney et al poster, this session] and similar pre-calculated values for MLS ‘ 1300 o || Mes
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(middle stratosphere (MS), H>,O) and 490 K (lower stratosphere (LS), N,O) during the SSW; white : A s ol e
overlays are PV contours. Black dots show the ACE-FTS observation locations g g 5ok
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|- By jELs 1928 bottom, ACE CHy) show abrupt US vortex breakdown in mid-January [J Above figure shows 8-day curtains, initialized with MLS N,O (left) and H,O (right)
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o YR o L) Very large, strong vortex reforms by late February, resulting in confined region of high H>O and [J GEOS-4 sPV maps (not RT) shown at levels of two horizontal lines on curtains, in middle (850 K) and lower (520 K) stratosphere
7 B L L8 UMBos0 80 CO, low CHy; vortex then gradually shrinks and weakens
S B0 N | W T RS B 5.40 540 [1 Much of fine-scale structure reflected in MLS in “blurred” form despite relatively poor (3—4 km) vertical resolution
> 5128 512§ [1 CO decreases in spring via chemical processes, as sunlight returns to the polar regions [e.g.,
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[1 Above EqL./time sections (top, ACE CH4 and MLS N,O; center, ACE and MLS H,O, bottom, ACE - ] 2 600F 1 E 1 E 5
and MLS O3) at 490 K (~19 km) show LS vortex breakdown in late January to mid-February; 800 800 130 S - 1F 1 g
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[1 Brief decline in O3 in January has been shown to be chemical loss in short cold period before SSW 2400 - - 0 — :
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[J Above EqL/time sections at 850 K (~30 km) show MS vortex breakdown in mid-January to early 4
February 1500 - [273an 20067 [ ]
[0 Much weaker vortex reforms by early March, then gradually shrinks and weakens again L Vortex-averages of MLS and ACE CO, H,0O, O3 throughout stratosphere, MLS N,O into upper - 1E 40 _
o . . stratosphere, and ACE CHy4 throughout stratosphere =1100F 1E 1 =
[1 Tracer gases show mixing out of vortex and complete disappearance of signature (low CHy4, N,O, 5 4 E 5135 &
O3, high H,O) of confined air in vortex [J Signature of descent throughout stratosphere abruptly destroyed (by mid-January in US, mid- g 1k ] g
February in LS) as strong mixing brings in extra-vortex air § %0 1E 130 g
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£ 3608 3608 [J CO decrease in late March chemistry-related
g 2409 2409 [0 12-day RT calculations from ACE locations, initialized with MLS CO (above)
2 120 120 [J LS vortex remains very small/weak, with continual mixing, thus signature of descent does not reap-
E 0 0 [J Despite relatively noisy MLS CO measurement, fine-scale structure generated from this initialization can be seen in ACE data (27 January), verifying the reality of the structure in
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' ‘ 0283 [J 7 February plot shows sampling within the vortex remnant over a narrow vertical range, captured well in MLS and ACE data
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o A L S E016 Thus, much of the fine-scale structure calculated to arise during the SSW is represented in the ACE and/or MLS observations
4 SLIMCAT Simulations
o Summary
52400 E .y ‘ - E 800
%1400 NS g Moo Transport during the January/February 2006 major stratospheric sudden warming (SSW) is being studied using the
SLIMCAT simulati led at MLS ob tons locations/ti for the 2005-2006 gi 102 Hlueol . unprecedented wealth of trace gas data from Aura MLS and ACE. The vortex broke up in the upper stratosphere
Arctic wi t51mu ablc?ns, sanllp © d? hel 0 ds er\;a 13?; clca 10nsrtt1mes, or e ) = 500 S E Haog | U Firstfigure shows MLS and SLIMCAT vortex averaged CO by mid-January, in the middle stratosphere in mid-January to early February, and in the lower stratosphere in late
rctic winter are being analyzed to help understand the transport processes: £ 13 . o . . : . .
: £ 160 [ Second figure shows MLS and SLIMCAT tracers as a function of EqL and time in the January to mid-February; this was one of the most complete V.OI'tGX breakups seen du1:1ng a major warming. MLS
[J New version [Chipperfield, 2006, QJRMS] includes updated radiation scheme and hy- 400 B - STTRE 0 middle (850 K H,0) and lower (490 K N,O) stratosphere and ACE trace gases show strong mixing out of the vortex during the SSW, with the signature of confined descent
brid 0-6 vertical coordinate disappearing or ne.arly disappez.lring throughout the stratos'phere. After the breakup, the upper'stratospheric VOI’?[@X
, , , , These first preliminary comparisons indicate good overall agreement between MLS and recovered very quickly, b.ecommg unusually strong by m1d—Febrgary; descent of trace gases in the vortex during
U Driven with ECMWF horizontal winds and temperatures N By T N TR SO T 6,50 SLIMCAT recovery echoed that during fall vortex development. In the middle stratosphere, the vortex recovered slowly,
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: . : i T N\ U e T N\ 644 5 remaining small and gaining average strength only in mid- to late March. In the lower stratosphere, the vortex
[1 Horizontal resolution 2.8 x2.8°, 50 vertical levels from surface to 3000 K 2 083 : « ” . . . . ’
= : 2325 [1 Assessment of differences (e.g., less CO “recovery” in model US, apparently stronger remained unprecedentedly weak and permeable for the remainder of the winter, and there was little confinement of
[J Initialized with MLS O3, H,O, HNO3, N,O and smoothed CO; other species taken from S 40 g 5_365 dgscent 1p rpodel 11.1 LS) will further understanding of modeling transport processes trace gases.
lower resolution multi-annual run % 0 e using assimilated winds Small-scale structure that developed during the warming due to filamentation and fine-scale transport is explored us-
£ 2208 , , , ing high-resolution trajectory calculations. Despite relatively coarse resolution, MLS and ACE both show evidence
s = 1922 [J Further study of SLIMCAT results will help detail the transport processes taking place 55 J Y P J
= ool 1649 durine the SSW of much of the fine-scale structure suggested in the calculations.
0 136 Hrng Initial comparisons with SLIMCAT chemical transport model results show very good overall agreement; more
1082 . . . . .
80 detailed comparisons and study of the simulations will help to further understand and document transport processes
during the major stratospheric sudden warming in 2006.




